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During the period of instrumental records, the North Atlantic Oscillation (NAO) has strongly influenced inter-
annual precipitation variations in the western Mediterranean, while some eastern parts of the basin have
shown an anti-phase relationship in precipitation and atmospheric pressure. Here we explore how the
NAO and other atmospheric circulation modes operated over the longer timescales of the Medieval Climate
Anomaly (MCA) and Little Ice Age (LIA). High-resolution palaeolimnological evidence from opposite ends
of the Mediterranean basin, supplemented by other palaeoclimate data, is used to track shifts in regional
hydro-climatic conditions. Multiple geochemical, sedimentological, isotopic and palaeoecological proxies
from Estanya and Montcortés lakes in northeast Spain and Nar lake in central Turkey have been cross-
correlated at decadal time intervals since AD 900. These dryland lakes capture sensitively changes in precip-
itation/evaporation (P/E) balance by adjustments in water level and salinity, and are especially valuable for
reconstructing variability over decadal–centennial timescales. Iberian lakes show lower water levels and
higher salinities during the 11th to 13th centuries synchronous with the MCA and generally more humid con-
ditions during the ‘LIA’ (15th–19th centuries). This pattern is also clearly evident in tree-ring records from
Morocco and from marine cores in the western Mediterranean Sea. In the eastern Mediterranean, palaeocli-
matic records from Turkey, Greece and the Levant show generally drier hydro-climatic conditions during the
LIA and a wetter phase during the MCA. This implies that a bipolar climate see-saw has operated in the Med-
iterranean for the last 1100 years. However, while western Mediterranean aridity appears consistent with
persistent positive NAO state during the MCA, the pattern is less clear in the eastern Mediterranean. Here
the strongest evidence for higher winter season precipitation during the MCA comes from central Turkey
in the northeastern sector of the Mediterranean basin. This in turn implies that the LIA/MCA hydro-
climatic pattern in the Mediterranean was determined by a combination of different climate modes along
with major physical geographical controls, and not by NAO forcing alone, or that the character of the NAO
and its teleconnections have been non-stationary.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

A recent issue of debate in the reconstruction and understanding
of climate dynamics during the Medieval Climate Anomaly (MCA,
Stine, 1994) is the spatio-temporal character of temperature anoma-
lies and their synchroneity around the globe (Bradley et al., 2003;
Mann et al., 2009; Diaz et al., 2011 and references therein, Xoplaki
rts).
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et al., 2011). The issue of spatial coherency applies even more acutely
to reconstructed changes in precipitation and water balance during
the last millennium, with some areas becoming wetter at the same
time that others experienced drought (Graham et al., 2007, 2011;
Seager et al., 2007; Diaz et al., 2011). For example, it is clear from
tree-ring studies that drought episodes during medieval times in
North America had a geographical as well as a temporal expression
(Cook et al., 2010). Well-distributed proxy climate data have the
potential to reconstruct spatial patterns of regional water balance
during the MCA and Little Ice Age (LIA). When combined with nu-
merical climate modelling experiments and analysis of atmospheric
or an east–west climate see-saw in the Mediterranean since AD 900,
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dynamics, it may be possible to link patterns of precipitation to dif-
ferent forcing mechanisms, including solar variations (Steinhilber
et al., 2009; Gray et al., 2010; Hegerl et al., 2011) and volcanic erup-
tions (Mann et al., 2005; Gao et al., 2008; Hegerl et al., 2011), and
to known atmospheric and oceanic circulation modes, such as the
Arctic Oscillation (Zhao et al., 2001; Feng et al., 2008; Mann et al.,
2009; Graham et al., 2011 and references therein). Changes in the
frequency or persistency of climate modes such as ENSO (El Niño-
Southern Oscillation) may partly account for thermal features during
the MCA (e.g. Mann et al., 2005, 2009; Graham et al., 2007, 2011;
Seager et al., 2007; Yan et al., 2011).

The Mediterranean basin is influenced by some of the most
important mechanisms acting upon the global climate system
(Xoplaki, 2002). It marks a transitional zone between the North
African–Arabian arid zone dominated by subtropical high pressure
and central–northern Europe affected by westerly circulation. In
addition, the Mediterranean climate is exposed to the South Asian
Monsoon in summer and the western Russian/Siberian High Pres-
sure System in winter (e.g. Corte-Real et al., 1995; Ribera et al.,
2000; Xoplaki, 2002; Lionello et al., 2006 and references therein).
As well as the influence of atmospheric circulation, climatic condi-
tions over the Mediterranean are affected by physico-geographical
factors such as orography, land–sea interactions and the Mediterra-
nean Sea itself (e.g. Lolis et al., 1999; Xoplaki et al., 2000).The prom-
inence of semi-arid conditions at the present day makes this area very
sensitive to climatic variations (Lionello et al., 2006, and references
therein; Diffenbaugh et al., 2007; Giorgi and Lionello, 2008; Kuglitsch
et al., 2010; Toreti et al., 2010). The overall hydrological deficit has re-
quired intensivewatermanagement during its longhistory of humanoc-
cupation, highlighting the central role of hydrological resources in the
Mediterranean region. In consequence, reconstructing the timing, inten-
sity, and spatial patterns of hydrological variability in theMediterranean
during the last millennium is crucial to understanding the climate forc-
ing mechanisms behind these changes. The region offers a broad spec-
trum of documentary information and natural archives, both in time
and space, which in turn allow climate reconstructions for past centuries
with high temporal and spatial resolution, as well as the analysis of cli-
matic extreme events and socio-economic impacts prior to the instru-
mental period (e.g. Luterbacher et al., 2006, in press and references
therein).
Fig. 1. Location of study sites in relation to the Mediterranean Oscillation shown by spatial S
Barnston and Livezey, 1987) and winter precipitation (1951–2006). The shaded areas deno
Taravilla, 4) La Cruz, 5) Zoñar, 6) Nar, 7) Tecer, 8) Van, 9) Dead Sea, 10) Middle Atlas, 11) Hig
Alboran and Balearic basins, 18) Israel coast.
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During the period of instrumental records, there is clear evidence
of a spatial signature to climate, with annual–decadal variability in
winter precipitation in the western Mediterranean being strongly
influenced by the North Atlantic Oscillation (NAO; Dünkeloh and
Jacobeit, 2003; Trigo et al., 2004; Xoplaki et al., 2004). The strongest
positive correlation with the NAO index is located over Iberia
(Fig. 1) linked to anomalous high pressure dominance over Northern
Europe and below normal sea level pressure over the Azores region
(negative NAO conditions). With this surface NAO pattern, the 500-
hPa geopotential level is anomalously high (low) in the area of the
Icelandic Low and anomalously low (high) across the regions of the
subtropical anticyclone and Europe in general, which forces North
Atlantic low pressure systems to follow a more northern route and
is associated with drier winters in Spain. It has been suggested that
the NAO also affects eastern parts of the Mediterranean basin, with
the strongest positive (negative) cold-season precipitation anomalies
in western Anatolia and parts of the Balkans related to a negative
(positive) phase of the NAO (Cullen and deMenocal, 2000; Türkeş
and Erlat, 2003, 2005, 2006). In contrast, parts of the southeastern
Mediterranean have shown an anti-phase relationship in precipitation
and atmospheric pressure with the western Mediterranean (Cullen
and deMenocal, 2000; Oldfield and Thompson, 2004; Xoplaki, 2002;
Xoplaki et al., 2004; see Fig. 1). In particular, an upper air trough extend-
ing from western Europe to the eastern Mediterranean in combination
with the connected strong Cyprus Low leads to increased rainfall in the
coastal areas of the southern Levant (Ziv et al., 2006; Saaroni et al.,
2010). Inter-annual precipitation trends in these southeastern areas
have therefore had an inverse correlation with those in the western
Mediterranean during the past ~100 years. The associated see-saw
pattern in atmospheric pressure has been labelled the Mediterranean
Oscillation (MO; Conte et al., 1989).

It has been proposed that the western Mediterranean experienced
more frequent negative NAO index states during parts of the LIA (e.g.
Luterbacher et al., 2006) and a persistent positive NAO state during
the MCA (Trouet et al., 2009). This therefore raises the question of
whether these quasi-persistent NAO states were associated with the
same kind of see-saw relationship between western and eastern
Mediterranean that has been observed for the last ~100 years. In
this paper, we use high-resolution palaeolimnological evidence for
shifts in regional water balance, supplemented by other proxy climate
pearman correlation between the NAO atmospheric teleconnection pattern (defined by
te significant at the 95% level. 1) Montcortès, Estanya and Basa de la Mora, 2) Arreo, 3)
h Atlas, 12) SW Taurus, 13) W Turkey, 14) NE Turkey, 15) Soreq, 16) Tagus estuary, 17)
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and instrumental data sets, to explore whether the NAO and MO op-
erated over the multi-centennial timescales of the LIA and the MCA.
We use statistical analysis to examine correlations between lake re-
cords located at the western and easternmost extremes of the Medi-
terranean basin in order to test the spatial coherence of
hydrological changes during the last millennium.
2. Lakes as archives of Late Holocene water balance changes

Dryland lakes can capture sensitively changes in Precipitation/
Evaporation (P/E) balance by adjustments in water level and salinity,
and are especially valuable for reconstructing hydro-climatic variabil-
ity over decadal–centennial timescales (Fritz, 2008). Most lakes in the
climatically wetter parts of the Mediterranean Basin have a positive
water balance such that their waters remain fresh. By contrast,
those in drier Mediterranean regions lose water through evaporation
from the lake surface and may be hydrologically closed and contain
saline waters. Water levels change in these closed lakes in response
to climatic variations, with lake level and/or salinity variations
reflecting past changes in effective moisture. Lakes are widely distrib-
uted across the Mediterranean Basin, allowing past spatial patterns of
climate to be reconstructed (e.g. Roberts et al., 2008). On the other
hand, in comparison with some other archives such as tree rings,
most lake records are less precisely dated in terms of absolute age
and are rarely able to capture inter-annual variability, due to sedi-
ment mixing on the lake bed. Lake water balance changes generally
integrate winter-season precipitation and summer-season evapora-
tion and evapotranspiration into a single signal, rather than repre-
senting climatic conditions during specific seasons. They are also
potentially subject to the confounding impact of human disturbance
which can overlay any climatic signal. There is widespread evidence
that catchment land-use changes have increased the influx of min-
eral detritus, organic matter and nutrients into many lakes during
recent centuries (Roberts and Reed, 2009). Deforestation may
have also altered the hydrology of some catchments, notably by in-
creasing runoff rates, while in other cases lake levels have fallen as a
consequence of water extraction for irrigation. For these reasons,
we focus here on selected Mediterranean lakes with highly-
resolved, multi-proxy late Holocene records from well dated core
sequences in which human and climatic signals have been differen-
tiated, supplementing them by more ubiquitous lower-resolution
sequences.

Past changes in lake water balance are recorded by a number of
sedimentary and geomorphological indicators. Water level fluctua-
tions higher than present day can be reconstructed via dated lake
marginal deposits (e.g. Bookman et al., 2004), or by changes in the
planktonic–benthic ratio of diatoms and other biological indicators
(e.g. Barker et al., 1994). Shifts in species assemblage composition
may also reflect variations in lake water salinity. In the case of dia-
toms, past changes in lake salinity have been quantified via transfer
functions which model statistically the relationship between modern
water chemistry and species assemblages (e.g. Reed, 1998). Oxygen
isotope analyses of precipitated carbonate crystals, mollusc and ostra-
cod shells, and diatom frustules provide another important way to re-
construct lake water balance over a hierarchy of timescales (Leng and
Marshall, 2004). For a given set of geographical and climatic bound-
ary conditions freshwater lakes with a short residence time have an
oxygen isotopic composition similar to that of incoming precipitation,
while those with a longer residence time and large evaporative losses
have increasingly positive δ18O values. Even “freshwater” systems in
the Mediterranean can be isotopically sensitive to regional water bal-
ance changes, so long as significant hydrological losses occur through
evaporation (Roberts et al., 2008).

When comparing different lake records, it is necessary to take ac-
count of three main sets of controls, namely,
Please cite this article as: Roberts, N., et al., Palaeolimnological evidence f
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(1) Climate forcing, including inter-annual variations and season-
ality of precipitation, temperature, etc., along with the re-
sponse time of each lake proxy (e.g. linked to lake water
residence time)

(2) Non-climatic factors, including human impact and other lake-
and parameter-specific controls, e.g. catchment size and type

(3) Chronological precision and accuracy.

Although there are no rigorous ways to partition each lake proxy
signal between these different controls, one simple way to do this is
via statistical correlations of proxy data across a hierarchy of spatial
scales, using results from

(1) The same sediment core, for which chronological correlation
can be assured. Close correlation between two proxies from
the same core would imply that they have been subjected to
a common forcing. If they are not correlated, then this would
be consistent with separate forcings; for instance, lake water
temperature (inferred from chironomids) vs nutrient loading
(inferred from diatoms)

(2) The same lake, for which common forcing can be broadly as-
sured for individual parameters. The same proxy from different
cores in the same lake would normally be expected to show a
close correlation. If they do not, then the most likely explana-
tion lies with imprecision/inaccuracy in core dating and corre-
lation, or significant spatial variability within the lake

(3) Different lakes in the same region, for which common climate
forcing is assured except for localised weather events. Even if
subject to common climate forcing, different lake records in
the same region may diverge due to (1) non-climatic differ-
ences between lakes and (2) errors in chronological correlation

(d) Lakes in different climatic regions, which will be subjected to
all three sets of factors and between which, correlations are
least likely to be strong. Where correlations are demonstrated,
it may be inferred that the lakes have been subjected to com-
mon forcing—most likely climatic—and that their chronologies
are robust.

We have employed this approach in our research design to include
multiple proxies from each of our three principal study lakes, repli-
cated lake and core records within one of our two study regions
(northeast Spain), and lakes from geographically distant locations
that have experienced contrasting climate histories during the period
of instrumental records.

3. Palaeoclimate data from three Mediterranean lakes

In the Iberian Peninsula, there are now many lake-based recon-
structions using geochemical and biological proxies with decadal or
better resolution spanning the MCA, LIA and modern periods, sum-
marised in Moreno et al. (2011, in review). As well as lying near the
centre of action of the ‘Mediterranean Oscillation’, Northern Spain
also possesses highly-resolved sequences which permit replication
of records within and between lake basins. Here we focus on the re-
cords from two nearby lakes in the Pre-Pyrenean range, at Mon-
tcortès (Corella et al., 2011) and Estanya (Morellón et al., 2009;
Morellón et al., 2011a).

In karstic Montcortès Lake (Corella et al., 2011) (Table 1) in-
creased carbonate production (high Total Inorganic Carbon, TIC) and
lower clastic input (low magnetic susceptibility) occurred during
wetter climatic conditions that characterised the main part of the
LIA (1330–1840 AD), while higher clastic input occurred during the
more arid MCA (1000–1330 AD) (Fig. 2). The presence of a low Med-
iterranean scrub community—today restricted to elevation below
800 m—suggests warmer temperatures during the MCA (Rull et al.,
2011). However, higher erosional input after 1840 AD was almost
certainly triggered by increased human occupation (Corella et al.,
or an east–west climate see-saw in the Mediterranean since AD 900,
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Table 1
Modern limnological characteristics of study lakes.

Montcortès, Spain Estanya, Spain Nar, Turkey

Location coordinates 42°19′ N
0° 59′ E

42°02′ N
01° 32′ E

38°20′ N
34°27′ E

Altitude (masl) 1027 670 1370
Zmax (m) 27.7 (2011) 20 (2008) 22.5 (2009)
Lake area, m2×105 1.7 1.9 5.6
Electrical conductivity mS cm−1 0.372 3.4 3.37 (2009)
Lake type Meromictic Monomictic Monomictic
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2011; Rull et al., 2011). Strong human impact therefore obscures the
climate signal during the last part of the LIA and 20th century, and
this part of the Montcortès record is excluded from further consider-
ation here. The proxies selected from this core sequence are dated by
AMS 14C and varve chronology, and have a mean sampling of b2 yr
Fig. 2. Selected proxy-climate data for Montcortès, Estanya and Nar la

Please cite this article as: Roberts, N., et al., Palaeolimnological evidence f
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for magnetic susceptibility and 6.5 yr for TIC/TOC (Total Inorganic/Or-
ganic Carbon).

At nearby brackish karstic Estanya Lake (Fig. 2), shallower water
levels and saline conditions predominated during medieval times
(870–1300 AD), and generally higher water levels and more diluted
waters from 1300 to 1900 AD, although this period shows a complex
pattern of wet and arid intervals (Morellón et al., 2011a). Maximum
lake levels occurred during the 19th century, and declined during
the 20th century. A suite of geochemical elements derived from
AVAATECH XRF II core scanning has been selected here as a climate-
salinity proxy, notably Ca and S reflecting carbonate and gypsum con-
centration. These data derive from two separate cores in the same
lake dated by AMS 14C, 210Pb and 137Cs. One of them (core 2) covers
the last 860 years with a mean sampling interval of 4 yr (Morellón
et al., 2011b), while core 1 covers a much longer timespan but not
the last seven centuries (Morellón et al., 2009). There is consequently
core overlap and replication for part of the medieval period around
AD 1140–1330 (Fig. 2). The northern Spanish lake records from
kes, AD900–2000. The Medieval period 1000–1400 AD is shaded.

or an east–west climate see-saw in the Mediterranean since AD 900,
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Table 2
Climate proxy data and decadal Pearson's cross-correlation coefficients for three Mediterranean lake records.

a1 yr interval post-AD1100, 5 yr interval pre-AD1100.
b Except 2 intervals of 19 yr.
c 1140–2000 (Nar), 1140–1850 (Montcortès), 1140–1330 (Estanya core 1).
Values significant at p=b0.05 level are shaded.

Fig. 3. Nar isotopes vs Montcortès TIC during the late C16th climate anomaly (drought
in central Turkey; wetness inferred for northern Iberia).
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Montcortès and Estanya show good overall agreement for the last
1100 years, giving confidence that they reflect common climatic
forcing.

At the eastern end of the Mediterranean, Nar crater lake in central
Turkey (Table 1) has one of the best-resolved late Holocene climate
records. Its continuously-varved sediments provide a well dated
proxy-climate sequence for the last 1720 years, with annual to decad-
al sample resolution. δ18O measurements on authigenic carbonates
show positive values, indicating drier climatic conditions, from 1400
to 1960 AD, with more negative isotopic values, and a wetter climate,
between AD 1000–1400 and after 1960 (Jones et al., 2006). These in-
terpretations of the stable isotope variations are confirmed by shifts
in carbonate mineralogy between aragonite, indicative of more evap-
orated lake conditions during the LIA and early 20th century, and cal-
cite, indicative of less evaporated conditions during the other phases.
The calcite–aragonite shifts are reflected in grey-scale analysis of the
core sediments (Jones, 2004). Diatom analysis of the Nar cores shows
significant assemblage changes that are broadly synchronous with the
δ18O record, although there is no evidence for strongly elevated lake sa-
linities during the last 1100 years, partly because of a threshold salinity
response in this lake (see Woodbridge and Roberts, 2011). Here we
use DCA axis1 of non-blooming diatoms as a palaeohydrological index
(see Woodbridge and Roberts, 2010 for further explanation).

The proxy-climate record from Nar lake shows a pattern of change
that is almost the mirror image of those from Iberia. In combination,
these three high-resolution lake sequences indicate that northern
Spain was dry during the MCA andwet duringmost of the LIA, where-
as central Anatolia showed a reverse pattern. This is consistent with
contrasting hydro-climatic histories for the east and west Mediterra-
nean over the past millennium.

To test these relationships more fully, we have cross-correlated
eight climate proxies from the three study lakes (Table 2). Because
the raw data have non-standard time intervals, they have been pro-
cessed to create decadal averages by being placed in ten-year time
“bins”. It should be noted that this processing can introduce some ad-
ditional errors; for example, the Nar diatom data derive from 3 adja-
cent varves taken every 10 years, whereas other proxy data represent
an average of measurements spanning the whole decade. The time in-
tervals used for correlation also vary, with Nar spanning the whole of
Please cite this article as: Roberts, N., et al., Palaeolimnological evidence f
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the last 1110 years, Montcortès covering the period from 900 to
1850 AD, and the two Estanya cores covering 900–1330 AD and
1140–2000 AD respectively. In addition, we recognise that there
may be a risk of temporal auto-correlation, which can be a particular
problem with long records where N (number of samples) is high, be-
cause the r value can be low and still show a significant p-value.
or an east–west climate see-saw in the Mediterranean since AD 900,
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Fig. 4. Centennial trends in proxy climate records: a) western Mediterranean; Montcortès MS, Estanya PCA axis 2, Moroccan tree ring data (Esper et al., 2007); b) eastern Mediter-
ranean; δ18O for Nar, Van (Wick et al., 2003), and Levantine marine cores (Schilman et al., 2001). The Medieval period 1000–1400 AD is shaded.
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Following the reasoning outlined in Section 2 above, it would be
expected that different hydro-climate proxies from the same core se-
quences should exhibit strongest correlation coefficients, and indeed
this is the case overall. The highest correlations are shown between
δ18O and grey scale at Nar (r=0.85; p=0.000), while for Nar diatoms
and for the three proxies from Montcortès, within-core correlations
range from 0.48 to 0.65 and are significant at the 0.05 level or better.
For Estanya, for which two separate core records are available,
decadal-resolution correlation for the 200-yr overlap period is not
significant (r=0.31, p=0.217). Even though visual comparison of
the two records shows similar centennial trends, at annual to decadal
timescales there is a relatively poor match, most likely due to dating
imprecision. Even a 2% age error at AD 1000 would be sufficient to
substantially weaken decadal correlations between two cores. Per-
haps significantly, r values between the Montcortès proxies and the
800-yr Estanya core 2 record are much higher (0.44 to 0.52) than
with Estanya core 1. This might imply that the dating problem lies
primarily with the longer Estanya core 1, which is less well-dated
for the late Holocene (Morellón et al., 2009).

Correlation coefficients are therefore consistently higher than 0.44
for different proxies within the same core record at both Nar and
Montcortès, and between lake records in the same climatic region
(Montcortès vs Estanya core 2). In terms of comparing the records
from different climate regions, namely northern Spain and central
Turkey, six of the nine comparisons between Nar and Montcortès
proxies have r values between 0.42 and 0.47. All of the Nar–Mon-
tcortès–Estanya core 2 correlations are statistically significant at the
0.05 level (Table 2). Given the existence of non-climatic as well as cli-
matic factors, it seems probable that Nar and Montcortès are record-
ing common, but inverse, responses to climate forcing at decadal and
longer timescales over the period 900–1850 AD. This is given support
by the fact that the Nar δ18O record shows a drought from 1580 to
Please cite this article as: Roberts, N., et al., Palaeolimnological evidence f
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1610 AD which is independently recorded in tree-ring data and his-
torical sources from Anatolia (Kuniholm, 1990; Touchan et al., 2007;
White, 2011 and references therein). This dry phase, also present in
the Nar diatom record (Woodbridge and Roberts, 2011), is marked
by a sharp peak in Total Inorganic Carbon at Montcortès (Fig. 3
upper graph) indicative of positive lake water balance and wet
hydro-climatic conditions, and also coincides with geochemistry
PCA axis 1 minimum at Estanya (Morellón et al., 2009). At both Nar
and Montcortès, this is the single largest inferred climatic anomaly
within the LIA, and is consistent with a chronological precision be-
tween the two records of ±5 years. 100-year moving window corre-
lations between “binned”Montcortès TIC and Nar δ18O show decadal-
mean r values above +0.8 and p values lower than 0.003 for the
period from 1560 to 1650 AD (Fig. 3 lower graph), highlighting the
strength of the anti-phase relationship during this part of the LIA.
This late 16th-century climate episode was matched by notably cold
summer temperatures in the Alps (Büntgen et al., 2006) and central
Europe (Luterbacher et al., 2004; Dobrovolný et al., 2010).

4. Regional multi-proxy climate evidence

To what extent are the changes observed in these three well-
resolved lake sediment records also indicated in other hydro-
climatic archives from the Mediterranean? Here we review a range
of evidence from the west and then the east Mediterranean, in each
case starting with other palaeolimnological data, since these should
be most directly commensurable with those analysed above, before
examining selected dendro-climatological, marine and other data
sets. These are described more fully in Luterbacher et al. (in press)
and in Moreno et al. (in review).

A broadly consistent hydrological pattern has been found in other
lacustrine sequences of northeast Spain (Moreno et al., 2011, in
or an east–west climate see-saw in the Mediterranean since AD 900,
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review; Morellón et al., 2011a). Decreased carbonate precipitation
and higher runoff occurred between the 14th and the 19th centuries
in Lake Basa de la Mora (Pyrenees), and variable but lower carbonate
precipitation and better preservation of varves, indicative of higher
lake levels, occurred in Lake Arreo (NW Ebro Watershed) during the
same period. In central Spain, the Taravilla lake sequence reflects
changes in the intensity of palaeofloods (Moreno et al., 2008) also
reflected in fluvial activity reconstructions from the Tagus River
(Benito et al., 2003). TheTaravilla lake record showsminimum frequen-
cy of extreme flood events during medieval times and an increase since
the 14th century. Pollen analyses suggest that these flood events are not
related to deforestation or increased human impact. In La Cruz Lake
(Cuenca province) (Julià et al., 1998), lower lake levels occurred during
the 9th–11th centuries, indicative of drier conditions. The development
of meromictic conditions during the LIAwas related to the synergetic ef-
fects of colder temperatures and higher lake levels suggesting wetter
conditions. In southern Spain, sedimentological data from the karstic,
15 m deep Zoñar Lake (Martín-Puertas et al., 2008) indicates arid condi-
tions synchronous with the MCA and two humid periods between 1200
and 1400 AD and around 1600 AD during the LIA. Lower lake levels and
higher salinities are therefore reconstructed from all Iberian records for
medieval times (9th to 13th centuries, drier), synchronous with the
MCA, and generally colder and more humid conditions during the LIA
(15th–19th centuries).

These findings are replicated in shallow marine records from the
Tagus estuary and from the rias of northwest Spain (Lebreiro et al.,
2006) where the input of fluvial-derived sediments clearly decreases
during medieval times. Deepmarine sediment cores from the Alboran
and Balearic basins indicate an increased influx of Saharan dust and a
reduction in fluvial particles between 950 and 1250 AD (Moreno et
al., 2011, in review). These records therefore point to arid conditions
in northwest Africa and/or more persistent winds coming from a
southwesterly direction. On land, the cedar tree ring sequence from
Morocco's Middle and High Atlas mountains provides a highly-
resolved late winter to early summer hydro-climatic record for the
last 950 years (Esper et al., 2007) and gives support to the MCA hav-
ing been climatically drier than the subsequent LIA. Values of the
long-term February–June Palmer Drought Severity Index (PDSI)
were above average for the period AD 1400–1980, and below average
before that time (Fig. 4).

In the eastern Mediterranean there are currently no other lake re-
cords with dating or sampling resolution similar to Nar for the last
millennium. However, the Nar sequence can be compared with
other lower-resolution lake records, such as the centennial-
resolution isotope sequence from Lake Van (Wick et al., 2003)
which is also varved. Van is the largest soda lake in the world by vol-
ume, and is likely to have a somewhat damped response to short-
term fluctuations in climate. Fig. 4 compares δ18O data for Van with
the 100-year mean values for Nar. These two lake records show sim-
ilar overall trends for the last 1100 years, with a shift to drier hydro-
climatic conditions at 1350–1400 AD, following a generally wetter
phase during the MCA (AD 950 to 1300). Further south, there is a re-
cord of Late Holocene lake-level fluctuations from the Dead Sea from
a sequence of well-dated palaeo-shorelines (Bookman et al., 2004;
Migowski et al., 2006). This provides a semi-continuous record of
lake highstands, with low lake-level stages largely based on inference,
for example the presence of an unconformity at AD 1400, following
higher water levels at 1100–1300 AD. Dead Sea water level fluctua-
tions during recent times have been significantly affected by human
impact, including abstraction of Jordan river water which has led to
desiccation of the shallow southern basin (Enzel et al., 2006).

Although there is now a significant body of tree ring width data for
the eastern Mediterranean, measurement series has been standardised
in amanner that eliminates low-frequency variability, so that long-term
hydro-climatic changes cannot currently be reconstructed from these
archives (Luterbacher et al., in press, and references therein). Most
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tree ring reconstructions (e.g. Touchan et al., 2005; 2007) also find
their strongest relationships with early summer precipitation, which
is not a significant rainfall season for most of the Mediterranean.

There are a number of excellent speleothem records from the eastern
Mediterranean spanning Holocene or longer timescales, but none so far
published which covers the last 1100 years at high temporal resolution.
In western Turkey three cave sequences are currently under analysis
which cover this time period (Göktürk et al., 2011; Luterbacher et al.,
in press), but preliminary results suggest that the MCA and LIA may
only be weakly expressed, with poor coherence between the stalagmite
records from the three caves. There is also a speleothem isotope record
spanning the last 500 years from the summer-green climate region of
northeast Turkey which shows a period of anomalously low precipita-
tion during the 16th century (Jex et al., 2010, 2011).

Finally, a few marine records have been analysed at relatively
good resolution for the Late Holocene, notably two cores taken at in-
termediate water depths from a high sedimentation site off the coast
of Israel (Schilman et al., 2001). This isotope record has a mean sam-
pling interval of ~30 years for the period 900–1900 AD, although it is
not well dated or resolved for the last two centuries. As at Nar it indi-
cates a wet phase during the latter part of the MCA, 1200–1400 AD,
followed by a dry shift during the 15th century AD (Fig. 4). Following
isotope maxima around 1450–1580 AD, a second LIA dry phase is in-
dicated around 1700 AD.

MCA–LIA hydroclimatic conditions across the Mediterranean re-
gion were the result not only of annual average precipitation totals,
but also of changes in temperature and seasonality. Temperature
changes are clearly indicated in marine records from the Mediterra-
nean region (e.g. Taricco et al., 2009) and in altitudinal shifts in mon-
tane regions such as the Pyrenees (Morellón et al., 2011a).
Nonetheless, for proxies such as lake sediments and tree rings, the
clearest integrated expression of climatic changes over the past
1110 years in the Mediterranean has been effective moisture avail-
ability. Our synthesis shows only partial agreement with the tree
ring-derived PDSI reconstruction for the Mediterranean since 1500
AD by Brewer et al. (2007). In particular, they infer relatively dry
(wet) conditions in the western (eastern) Mediterranean prior to
~1670 AD, which are not evident in the lake records presented
here, nor in the wider array of proxy-climate data discussed by
Luterbacher et al. (in press).

In addition to these hydro-climatic trends during the MCA and LIA,
it should be noted that many lake records show climatic changes of
significantly larger amplitude in the preceding 1500 years, notably
during and after the Roman period. For example, Zoñar Lake in south-
ern Spain contains a varved interval deposited during the Iberian–
Roman ages (550 BC–AD 350), although it includes an arid interval
during the Roman Imperial Epoch (190 BC–AD 150) (Martín-Puertas
et al., 2009). The interval from ~300 BC to 600 AD includes the most
humid conditions of the last three millennia not only in southern
Spain, but also in parts of the eastern Mediterranean, where Dead
Sea lake levels reached a maximum between 200 BC and 100 AD
(Bookman et al., 2004). A wet Roman interval (pre-140 BC to AD
100) is also clearly evident in high-resolution isotopic analysis of spe-
leothems from Soreq cave in Israel (Orland et al., 2009). There is evi-
dence of major wet–dry shifts in central Anatolia during the first
millennium AD, including a major drought event around 380–540
AD. In contrast to the LIA, this dry phase was of sufficient intensity
and duration to make lake water strongly saline at Nar according to
diatom data (Woodbridge and Roberts, 2011) and for aragonite pre-
cipitation in Tecer lake (Kuzucuoğlu et al., 2011). Because absolute
chronologies for Classical times are not always as precise as during
the last millennium, correlations between records can in turn be
less secure. This makes it uncertain whether hydro-climatic changes
between east and west Mediterranean were in or out of phase with
each other during the Roman period, although an anti-phase relation-
ship between southern Spain and the southern Levant is suggested
or an east–west climate see-saw in the Mediterranean since AD 900,
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Fig. 5. Spatial Spearman correlations between 5 different atmospheric teleconnection patterns (defined by Barnston and Livezey, 1987) and winter precipitation (1951–2006) in the
Mediterranean. The shaded areas denote significant at the 95% level. NAO = North Atlantic Oscillation; EAWR = East Atlantic/Western Russia; SCA = Scandinavian; EA = East
Atlantic; POL = Polar/Eurasia.
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for the period from ~200 BC to AD ~100. In any case, it is significant
that the MCA and LIA do not capture the full amplitude of climatic
variability in the Mediterranean under Late Holocene (i.e. modern,
pre-Anthropocene) atmospheric boundary conditions.

5. Comparing atmospheric circulation modes and proxy data

The pattern of climatic change across Iberia, Morocco and the ad-
jacent western Mediterranean seas for the last millennium is clear
and consistent; the MCA (1000–1400 AD) was overall drier than the
Fig. 6. Canonical spatial patterns of the second CCA of Xoplaki et al. (2004), depicting typic
mm (right).

Please cite this article as: Roberts, N., et al., Palaeolimnological evidence f
Glob. Planet. Change (2011), doi:10.1016/j.gloplacha.2011.11.002
LIA (1400–1850 AD; Esper et al., 2007; Moreno et al., 2011, in
review). This appears to be consistent with quasi-permanent NAO
forcing, with negative index states being more common during the
LIA and positive ones during the MCA as proposed by Trouet et al.
(2009). In the eastern Mediterranean, the well-dated evidence from
Nar lake points to a pattern since 900 AD opposite to that in the west-
ern Mediterranean at both decadal and centennial timescales. This
appears to indicate that a precipitation see-saw has operated in the
Mediterranean during the last eleven centuries, with the west being
wet when the east was dry, and vice-versa.
al sea level pressure anomalies in hPa (left) and wet season precipitation anomalies in

or an east–west climate see-saw in the Mediterranean since AD 900,

image of Fig.�5
image of Fig.�6
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On the other hand, proxy climate records from the southern Le-
vant, such as the Dead Sea levels and the marine isotope sequence
shown in Fig. 4, carry a signal that is less clearly opposite to that
from the western Mediterranean during the last millennium, even if
they bear a partial resemblance to the Nar lake sequence. Similarly,
seasonal instrumental precipitation variations in central Anatolia
and northern Spain (using gridded CRUTS3 data; Mitchell and Jones,
2005, updated) reveal no correlation within the 20th century. Previ-
ous studies (e.g. Cullen and deMenocal, 2000; Türkeş and Erlat,
2003) have shown that the Central Anatolian rainfall region has had
an overall positive correlation with the negative NAO index state dur-
ing the last ~100 years; that is, one broadly in-phase rather than out-
of-phase with precipitation changes in Iberia. This could imply that
the forcing which generated the east–west precipitation see-saw for
the 1000-year period prior to instrumental records was not directly
NAO-related, or that the character of the NAO and its teleconnections
has been non-stationary over the timescales of the MCA and LIA (c.f.
Jones et al., 2003). Mann (2002), for example, concluded that where-
as the NAO has been linked to eastern Mediterranean temperature
variations over inter-annual to decadal timescales, other patterns
have been more important on multi-decadal and longer timescales.
Could the MCA/LIA east–west see-saw therefore be explained by
other climate modes? For the instrumental period, a number of
other atmospheric teleconnections have been proposed to be of rele-
vance for the Mediterranean. For central Turkey, one of the strongest
winter-season relationships is the North Sea–Caspian Pattern Index
(NCPI; Kutiel and Türkeş, 2005), a local expression of the East Atlan-
tic/Western Russia (EAWR) pattern identified by Barnston and
Livezey (1987). On the other hand absolute differences in precipita-
tion amounts between the two NCPI index states are less significant
than those in temperature.

Fig. 5 shows the spatial Spearman correlation between the leading
five northern hemispheric teleconnection modes (Barnston and
Livezey, 1987) and winter land-based precipitation across the Medi-
terranean for the period 1951–2006. It can clearly be seen that
there is no single mode that can account for the west–east differences
in precipitation. The EAWR pattern and the NAO show a significant
negative correlation with eastern Spain but not a significant positive
correlation for the eastern basin. The Scandinavian (SCA) and East At-
lantic (EA) patterns show a positive relationship with eastern Spain,
but none of those teleconnection patterns on their own can account
for a significant amount of winter precipitation variability over the
past ~60 years across the whole Mediterranean basin.

The seesaw-like oscillation between the drier conditions in the
western and wetter conditions in the eastern Mediterranean during
the MCA shows a resemblance with results presented by Dünkeloh
and Jacobeit (2003) and Xoplaki et al. (2004). Xoplaki et al. (2004)
applied a Canonical Correlation Analysis (CCA) to the extended win-
tertime wet period (October–March) precipitation anomalies in the
Mediterranean and large-scale dynamics at different heights and
SSTs. The combination effect of large scale circulation influence repre-
sented by the first canonical pair accounts for ~10% of the precipita-
tion variations in the Mediterranean. The spatial characteristics of
this pattern are in agreement with Dünkeloh and Jacobeit (2003)
for coastal Mediterranean precipitation. The first canonical mode
shows significant negative correlation with the NAO and EAWR pat-
terns (−0.66 and −0.50, respectively, Xoplaki et al., 2004) suggest-
ing a synergistic influence of the two patterns with different
signature on the western and eastern parts of the Mediterranean.
Eshel and Farrell (2000) and Eshel et al. (2000) advanced a simple
theory explaining extended winter (October–March) eastern Medi-
terranean rainfall variability in terms of subsidence anomalies associ-
ated with large-scale North Atlantic anomalies. Their concept of
anomalous high pressure over Greenland/Iceland and accompanying
concurrent depressions over the Mediterranean connected with
anomalous warm southerlies and higher precipitation amounts in
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the region, is very similar to the structure of the first CCA of extended
winter precipitation in Xoplaki et al. (2004). The 700 to 300 hPa
anomaly patterns indicate an increasing influence of a positive (neg-
ative) anomaly over southwest Asia. This anomaly is absent in the
lower troposphere (Eshel and Farrell, 2000; Eshel et al., 2000). The
analysis of Xoplaki et al. (2004) indicated that it is important to in-
clude the mid- and upper level large-scale atmospheric circulation
in order to explain regional differences (west–east) in precipitation
variability.

The second CCA pattern of Xoplaki et al. (2004) is linked to a pre-
dominantly meridional circulation associated with wet northeast
Mediterranean and northern Levant, as well as a dry Iberian Peninsula
(Fig. 6) and is significantly correlated with the Polar/Eurasia pattern
(POL; Barnston and Livezey, 1987). This cyclonic anomaly pattern
causes similar influences with a large-scale cyclonic anomaly circula-
tion pattern over the central and eastern Mediterranean basins and
parts of North Africa, producing increased precipitation (Türkeş and
Erlat, 2005, 2006) and increased temperature conditions (Türkeş
and Erlat, 2008) for most of west, central and southern Turkey during
the winter months. The responsible atmospheric pattern is connected
to the influence of the subtropical high (positive geopotential height
anomalies) that is restricted to the Iberian Peninsula and northwest-
ern Africa connected with subsidence, stable conditions and reduced
precipitation. The areas of enhanced precipitation amounts are locat-
ed in the southeastern part of the anomalous trough stretching from
Greenland over Central Europe to the coast of North Africa. In this
sector of the trough, the vorticity advection is maximally connected
with strong uplift, instability, condensation and a high chance of pre-
cipitation (Xoplaki et al., 2004). As in Xoplaki et al. (2004) the second
canonical mode of Dünkeloh and Jacobeit (2003) is connected with a
precipitation pattern across the Mediterranean that appears closer to
that manifest from palaeo-data for the MCA and LIA, namely with op-
posing centres of variability in central Turkey and northern Spain.
This inverse relationship is particularly strong for the period
1560–1650 AD, and suggests that a meridional atmospheric circula-
tion may have predominated during this 100-year period. Perhaps
significantly, this east–west hydro-climatic pattern broadly corre-
sponds to that displayed both in model simulations and palaeo-data
for longer Holocene timescales (Roberts et al., 2011).

Additionally, seasonal factors may have come into play, notably in
spring, which in central Turkey is more important than winter in
terms of total precipitation. Spring season CCP2 of Dünkeloh and
Jacobeit (2003) resembles that of winter CCP1, but the western centre
shifts north towards the Bay of Biscay, creating an inverse pattern of
precipitation variability between Iberia–Morocco and Greece–Turkey,
similar to that observed over the last millennium. Xoplaki et al.
(2004) clearly point to the fact, that despite the importance of the
large-scale atmospheric features, smaller scale processes also influ-
ence regional rainfall variability in the Mediterranean. Among them,
land–sea interactions, the influence of the SSTs connected with latent
and sensible heat flux, orographical features and thermodynamical
aspects interact with each other on different timescales and are
superimposed on the quasi-stationary planetary waves which control
large-scale advection.

6. Conclusions

Spatial patterns in hydro-climate revealed by proxy data have the
potential to distinguish between alternative modes of past atmo-
spheric circulation. During the period of instrumental records, there
is clear evidence of a spatial signature to variations in precipitation
in the Mediterranean region which can partly be linked to the NAO.
This relationship is clearest in parts of Iberia and northern Morocco,
where increases in precipitation are associated with anomalous high
pressure dominance over Northern Europe (negative NAO condi-
tions). In parts of the eastern Mediterranean, notably the southern
or an east–west climate see-saw in the Mediterranean since AD 900,
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Levant and northeast Africa, an anti-phase relationship in precipita-
tion and atmospheric pressure with the western Mediterranean has
operated over the last two centuries.

Trouet et al. (2009) proposed that the western Mediterranean ex-
perienced a persistent positive NAO state during the MCA. If correct,
then it might be expected that the northwest–southeast “Mediterra-
nean Oscillation” would also have operated during the LIA and MCA.
High-resolution palaeolimnological data from northern Spain show
good inter-site coherence, and indicate lower water levels and higher
salinities synchronous with the MCA and generally more humid con-
ditions during the LIA. This pattern is confirmed by other lake, marine
and tree-ring records from Iberia and Morocco (Moreno et al., 2011,
in review). In contrast, Nar lake in central Turkey shows an opposite
pattern of wet MCA and a dry LIA. This is supported by statistically-
significant cross-correlations of decadal-average proxy-climate data
between lake records, and by other, lower-resolution marine and
lake data from the eastern Mediterranean. The relationship between
different proxies and hydro-climatic indices (e.g. PDSI) is unlikely to
have been simple or linear, for example, because of proxy threshold
responses. None the less, it seems likely that an east–west bipolar cli-
mate see-saw has operated in the Mediterranean for the last
1100 years.

While western Mediterranean aridity appears consistent with
NAO forcing during the MCA, the relationship is less clear in the
eastern Mediterranean. Currently the strongest evidence for higher
winter-season precipitation during the MCA comes primarily from
central Anatolia, which—unlike the southeast Mediterranean—has
not shown an inverse relationship with NAO phases during the peri-
od of instrumental record. Our results therefore do not give support
to the Mediterranean Oscillation as a meaningful atmospheric pat-
tern over the pre-instrumental time period. Apparent differences
in the strength and positions of the anomaly circulation patterns of
the NAO phases may be due to the additional influences of other cli-
mate variability modes related to more meridional atmospheric
configurations (e.g. anomalous higher pressure in the west, anoma-
lous lower pressure in east). This in turn implies that the LIA/MCA
hydro-climatic pattern in the Mediterranean was determined by a
combination of climate modes, such as the EAWR in synergy with
POL, along with major physical geographical controls, and not solely
by NAO forcing. Alternatively or additionally, the character of the
NAO and its teleconnections may have varied over the timescales
of the MCA and LIA (c.f. Jones et al., 2003). Whatever the precise ex-
planation, it is clear that changes in the climate of the Mediterra-
nean have not been uniform over the past millennium, but instead
have shown contrasting spatio-temporal trends and patterns across
the basin.
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