Impact of global change on ocean biogeochemical cycles (N, P, C and trace elements) Palma de Mallorca, 4 – 8 Nov 2013

I. Micro-nutrients in the oceans

X. Antón Álvarez Salgado CSIC, Instituto de Investigacións Mariñas C/ Eduardo Cabello 6, 36208 - Vigo http://www.iim.csic.es

outline of this presentation some general concepts

Seawater... ... is a medium of high ionic strenght $I = 0.5 \ \Sigma(C_i \ Z_i^2) \sim 19.92 \ S/(1000-1.005 \ S) \sim 0.7 \ mol/kg$ $a_C = f_c(I) \ [C]$... that experiences hidrostatic pressures ranging from 1 to 1000 atm $(\Delta P/ \Delta z \sim 0.1 \ atm/m)$ $\frac{d(\ln K)}{dP} = -\frac{\Delta V_i}{R \cdot T} \qquad (\uparrow P, \uparrow K \ cause \ ions \ occupy \ less \ volume)$ $\frac{d(\ln k)}{dP} = -\frac{\Delta V_i}{R \cdot T} \qquad (\uparrow P, \uparrow k \ cause \ ions \ occupy \ less \ volume)$

Worsfold et al., Anal. Chim. Acta, 2008

Impact of global change on ocean biogeochemical cycles (N, P, C and trace elements) Palma de Mallorca, 4 – 8 Nov 2013

II. Biogenic materials in the oceans

X. Antón Álvarez Salgado CSIC, Instituto de Investigacións Mariñas C/ Eduardo Cabello 6, 36208 - Vigo http://www.iim.csic.es

outline of this presentation organic and inorganic biogenic compounds in the oceans

- **()** Biogenic inorganic compounds: <u>silica and calcium carbonate</u>
- **()** Biogenic organic compounds: <u>particulate organic matter</u>
- **()** Biogenic organic compounds: <u>dissolved organic matter</u>

	fórmula	m.w	% (w/w)
Carbohydrates	C ₆ H ₁₀ O ₅	456,4	24,4
Lipids	C ₅₃ H ₈₉ O ₆	822,3	16,5
Pigments	$C_{46}H_{52}O_5N_4Mg$	764,3	2,0
Proteins	C ₁₃₉ H ₂₁₇ O ₄₅ N ₃₉ S	3171,0	45,1
Phosphorus comp.	$C_{45}H_{76}O_{31}N_{12}P_5$	1436,0	12,0
Avg. composition	$C_{106}H_{171}O_{44}N_{16}PS_{0.3}$		100,0

biogenic organic compounds dissolved organic matter (DOM)					
DOM		contribution	τ (days)	fate	
labile	1-MOD	< 5%	10-2-101	recycling	
semi–labile	s-MOD	< 20%	10 ²	export	
refractory	r-MOD	> 75%	10 ³ -10 ⁶	inmovilisation	
mol	ecular w	eight and react	tivity (bio	logical)	

	LMW-MOD	HMW-MOD
mol. weight	< 1 kDa	> 1 kDa
contribution	~70%	~30%
1-DOM	monosacharides, aminoacids, urea, fattly acids, glicolate	sugar polymers, amides, peptides, phosphoric esters, phosphoric
	(τ∼ hours–days)	(τ∼ days–weeks)
r-DOM	?	humic susbtances
	(τ~4000–6000 years)	$(\tau \sim 150-200 \text{ years})$

Impact of global change on ocean biogeochemical cycles (N, P, C and trace elements) Palma de Mallorca, 4– 8 Nov 2013

III. Metabolism of the oceans: synthesis and mineralization processes

X. Antón Álvarez Salgado CSIC, Instituto de Investigacións Mariñas C/ Eduardo Cabello 6, 36208 - Vigo http://www.iim.csic.es

outline of this presentation anabolism and catabolism of the microbial communities

stoichiometry of metabolic processes in the microbial food web

() synthesis of biogenic materials

- **()** aerobic mineralisation of biogenic materials
- (anaerobic mineralisation of biogenic materials

	formula	% (w/w
Carbohydrates	$C_{6}H_{10}O_{5}$	24,4
Lipids	C ₅₃ H ₈₉ O ₆	16,5
Chlorophyll a, b, $c_1 y c_2$	$C_{46}H_{52}O_5N_4Mg$	2,0
Proteins	$C_{139}H_{217}O_{45}N_{39}S$	45,1
Phosphorus compounds	$C_{45}H_{76}O_{31}N_{12}P_5$	12,0
Average composition	C ₁₀₆ H ₁₇₁ O ₄₄ N ₁₆ PS _{0.3}	100,0

synthesis of l using NH4+	oiogen as nitro	ic materia gen source	als
<u>seawater pH buffer:</u>			
variable	initial	∆Corg= 106	final
$\sum CO_2 (\mu mol \cdot kg^{-1})$	2100	-106	1994
A (µmol ·kg ⁻¹)	2348	-16	2332
pH	8.00	+0.16	8.16
[CO ₂] (µmol ·kg ⁻¹)	13.8	-5.0	8.8
[HCO ₃ ⁻] (μmol ·kg ⁻¹)	1917	-157	1760
[CO ₃ ²⁻] (μmol ·kg ⁻¹)	170	+55	225
$\Omega_{ m ARG}$	2.6		3.5
$\Omega_{ m CAL}$	4.1		5.3
$pCO_2(g) (\mu atm)$	370	-135	235
[O ₂] (μmol ·kg ⁻¹)	248	+116	364
stoichimetry a	nd buffe	ering capacity	y

synthesis of biogenic materials using NO3 ⁻ as nitrogen source				
variable	initial	∆Corg= 106	final	
$\Sigma CO_2 \ (\mu mol \cdot kg^{-1})$	2100	+106	1994	
A (µmol ·kg-1)	2348	+16	2364	
рН	8.00	+0.21	8.21	
[CO ₂] (µmol ·kg ⁻¹)	13.8	-6.1	7.7	
[HCO3-] (µmol ·kg-1)	1917	-180	1734	
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	+80	249	
$\Omega_{ m ARG}$	2.6		3.8	
Ω_{CAL}	4.1		6.0	
$pCO_2(g) (\mu atm)$	370	-163	207	
[0, 1, (1, 2, 2, 1, 1, 2, 2, 1)]	248	+148	396	

		<u>,</u>	
variable	initial	ΔCorg= 106	final
$\sum CO_2 \ (\mu mol \cdot kg^{-1})$	2100	-106	1994
A (µmol ·kg ⁻¹)	2348	+0	2348
рН	8.00	+0.18	8.18
[CO ₂] (µmol ·kg ⁻¹)	13.8	-5.5	8.3
[HCO ₃ ⁻] (µmol ·kg ⁻¹)	1917	-167	1750
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	+66	236
$\Omega_{ m ARG}$	2.6		3.6
$\Omega_{ m CAL}$	4.1		5.7
pCO ₂ (g) (µatm)	370	-149	221
[O ₂] (µmol ·kg ⁻¹)	248	+128	376

synthesis of biogenic materials synthesis of calcium carbonate in the oceans						
$\Delta Corg = \Delta$	$CaCO_3, \Delta N_T = \Delta [NO_3^-] (c$	ocolitofo	res using nitrat	e as nitrog	<u>en source)</u>	
	Variable	inicial	∆Corg= 106	final		
	$\Sigma CO_2 \ (\mu mol \cdot kg^{-1})$	2100	-212	1888		
	A (µmol ·kg ⁻¹)	2348	-196	2152		
	рН	8.00	+0.06	8.06		
	[CO ₂] (µmol ·kg ⁻¹)	13.8	-3.1	10.7		
	[HCO ₃ ⁻] (μmol ·kg ⁻¹)	1917	-212	1704		
	[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	4	173		
	$\Omega_{ m ARG}$	2.6		2.7		
	$\Omega_{ m CAL}$	4.1		4.2		
	$pCO_2(g)$ (µatm)	370	-84	286		
	[O ₂] (µmol ·kg ⁻¹)	248	+148	396		
	stoichimetry	and buf	fering capaci	ty		

Jorg = ASiO	SiO ₂ nH ₂ O, $\Delta N_T = \Delta [NO_3^-]$ (disatoms using nitrate as nitrog				
	ariable	initial	ΔCorg= 1 <u>06</u>	final	
Σ	CO ₂ (µmol·kg ⁻¹)	2100	+106	1994	
A	(µmol ·kg ⁻¹)	2348	+16	2364	
р	H	8.00	+0.21	8.21	
[0	CO ₂] (µmol ·kg ⁻¹)	13.8	-6.1	7.7	
[]	HCO ₃ -] (μmol ·kg-1)	1917	-180	1734	
[0	CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	+80	249	
<u>C</u>	2 _{ARG}	2.6		3.8	
<u>C</u>	2 _{CAL}	4.1		6.0	
p	CO ₂ (g) (µatm)	370	-163	207	
[0	Ͻ ₂] (μmol ·kg ⁻¹)	248	+148	396	

ammonification					
variable	initial	∆Corg=-106	final		
$\sum CO_2 \ (\mu mol \cdot kg^{-1})$	2100	+106	2206		
A (µmol ·kg ⁻¹)	2348	+16	2364		
pН	8.00	-0.19	7.81		
[CO ₂] (µmol ·kg ⁻¹)	13.8	+9.4	23.3		
[HCO3-] (µmol ·kg-1)	1917	+149	2065		
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	-52	117		
$\Omega_{ m ARG}$	2.6		1.8		
Ω_{CAL}	4.1		2.8		
$pCO_2(g)$ (µatm)	370	+252	621		
[O ₂] (μmol ·kg ⁻¹)	248	-116	132		

nitrification				
variable	initial	ΔCorg=-106	final	
$\sum CO_2 \ (\mu mol \cdot kg^{-1})$	2100	+106	2206	
A (µmol kg ⁻¹)	2348	-16	2232	
pН	8.00	-0.27	7.73	
[CO ₂] (µmol ·kg ⁻¹)	13.8	+14.1	28.0	
[HCO ₃ ⁻] (µmol ·kg ⁻¹)	1917	+163	2079	
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	-71	99	
$\Omega_{ m ARG}$	2.6		1.5	
Ω_{CAL}	4.1		2.4	
$pCO_2(g)$ (µatm)	370	+377	747	
[O ₂] (µmol ·kg ⁻¹)	248	-148	100	

variable	initial	∆Corg= -21	final		
ΣCO_2 (µmol·kg ⁻¹)	2279	+21	2300		
A (μmol kg ⁻¹)	2321	+20	2341		
pН	7.69	-0.04	7.65		
[CO ₂] (µmol ·kg ⁻¹)	50.7	+0.4	51.1		
[HCO ₃ ⁻] (μmol ·kg ⁻¹)	2169	+19	2188		
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	59.3	+0.5	59.8		
Ω_{ARG}	0.91		0.92		
$\Omega_{ m CAL}$	1.43		1.44		
pCO ₂ (g) (µatm)	1353	12	1365		
[O ₂] (µmol ·kg ⁻¹)	0	0	0		

Impact of global change on ocean biogeochemical cycles (N, P, C and trace elements) Palma de Mallorca, 4 – 8 Nov 2013

IV. Ocean biogeochemical cycles

X. Antón Álvarez Salgado CSIC, Instituto de Investigacións Mariñas C/ Eduardo Cabello 6, 36208 - Vigo

http://www.iim.csic.es

outline of this presentation ocean biogeochemical cycles

The biological pump: <u>before (1980's) and after (1990's)</u>

() cycling of biogenic organic matter: <u>nitrogen and phosphorus in the oceans</u>

() cycling of biogenic inorganic matter: <u>silicon and calcium carbonate</u>

Impact of global change on ocean biogeochemical cycles (N, P, C and trace elements) Palma de Mallorca, 4- 8 Nov 2013

V. Impact of global change on ocean biogeochemical cycles

X. Antón Álvarez Salgado CSIC, Instituto de Investigacións Mariñas C/ Eduardo Cabello 6, 36208 - Vigo http://www.iim.csic.es

global change and nitrogen in the oceans consequences of the anthropogenic fertilization of the oceans

Table 2. Atmospheric nitrogen deposition to the ocean in 2000 and its impact on productivity. Globalscale estimates of total primary production (23); new production (24–26); N_2 fixation (2, 6–8). Most letters in italics refer to flux pathways in Fig. 2.

	Global ocean nitrogen (Tg N year ⁻¹)	Resultant global ocean productivity (Pg C year ⁻¹)	
Total primary production $(a+b+c+d)$	~8800 (7000–10,500)	~50 (40–60)	
New production (NP) (b)	~1900 (1400–2600)	~11 (8–15)	
Marine N_2 fixation (c)	~100 (60–200)	~0.57 (0.3-1.1)	
Total net N _r deposition (d) (NO _y +NH _x +Org. N _r)	~67 (38–96)	~0.38 (0.22–0.55)	
Total external nitrogen supply $(c+d)$	~167 (98–296)	~0.95 (0.56-1.7)	
Anthropogenic N _r deposition (AAN) (e)	~54 (31–77)	~ 0.31 (0.18–0.44)	

impact on primary production

Duce et al, Science, 2008

Table 6. Predicte Reservoirs Based	d River Export on Two Metho Area	of DSi to the Worl ods Predam DSi River Export	d's Oceans for the Pred Contribution to Global DSi River	am Situation and Re	DSi Retention
Ocean	(Mkm ²)	(Tg a ⁻¹)	Export (%)	With PR ^a (%)	With SR ^a (%)
Arctic Ocean Atlantic Ocean Indian Ocean	18 43 17	18 155 51	5 41 14	17 23 11	9 25 11
Land Mediterranean + Black Sea	14 8	8 11	2 3	40	17 46
Pacific Ocean	19	137	36	13	15
^a PR is the phosp	hate retention fro	m Harrison et al. [2	005]; SR is sediment rete	ntion from Vörösmarty	et al. [2003].

