Impact of global change on ocean biogeochemical cycles (N, P, C and trace elements) Palma de Mallorca, 17– 21 Oct 2011

III. Metabolism of the oceans: synthesis and mineralization processes

X. Antón Álvarez Salgado CSIC, Instituto de Investigacións Mariñas C/ Eduardo Cabello 6, 36208 - Vigo http://www.iim.csic.es

outline of this presentation anabolism and catabolism of the microbial communities

stoichiometry of metabolic processes in the microbial food web

- **()** synthesis of biogenic materials
- **(P)** aerobic mineralisation of biogenic materials
- **(P)** anaerobic mineralisation of biogenic materials

synthesis of biogenic materials synthesis of organic matter by phytoplankton

global distribution of primary production

synthesis of biogenic materials synthesis of organic matter by phytoplankton

limiting elements of marine primary production

Bernard, Biogeosciences Diss., 2009

synthesis of biogenic materials photosyntesis of phytoplanktonic organic matter

	formula	% (w/w)	ε _{4,25}	ε _{8,0} ε	$_{8,0} - \varepsilon_{4,25}$
Carbohydrates	$C_{6}H_{10}O_{5}$	24,4	0,000	0,000	0,000
Lipids	$C_{53}H_{89}O_{6}$	16,5	0,000	0,000	0,000
Chlorophyll a, b, $c_1 y c_2$	$C_{46}H_{52}O_5N_4Mg$	2,0	0,000	0,000	0,000
Proteins	$C_{139}H_{217}O_{45}N_{39}S$	45,1	1,288	-1,029	-2,317
Phosphorus compounds	$C_{45}H_{76}O_{31}N_{12}P_5$	12,0	-3,018	-6,164	-3,145
Average composition	C ₁₀₆ H ₁₇₁ O ₄₄ N ₁₆ PS _{0.3}	100,0	-0,162	-1,586	-1,424

composition and alkalinity of phytoplanktonic organic matter

Fraga & Álvarez-Salgado, Cienc. Mar., 2005

synthesis of biogenic materials ΣCO_2 sources of marine phytoplankton photosynthesis

mechanisms of incorporation of CO₂ y HCO₃⁻

De Baar, Prog. Oceanogr., 1994

synthesis of biogenic materials using NH₄⁺ as nitrogen source

$106 \text{ HCO}_{3}^{-} + 16 \text{ NH}_{4}^{+} + \text{HPO}_{4}^{-2} + 46 \text{ H}_{2}\text{O} \longrightarrow \text{ C}_{106}\text{H}_{171}\text{O}_{44}\text{N}_{16}\text{P} + 116 \text{ O}_{2} + 92 \text{ OH}^{-1}\text{O}_{10}^{-1$

$\Delta TAorg = 0.92 \cdot \Delta[NH_4^+] - 0.23 \cdot \Delta[P_T] = 0.906 \cdot \Delta[NH_4^+]$

	formula	⁰⁄₀ (w/w)	$\frac{\Delta TA}{\Delta [NH_4^+]}$
Carbohydrates	$C_{6}H_{10}O_{5}$	24,4	0,000
Lipids	$C_{53}H_{89}O_{6}$	16,5	0,000
Chlorophyll a, b, $c_1 y c_2$	$C_{46}H_{52}O_5N_4Mg$	2,0	1,500
Proteins	$C_{139}H_{217}O_{45}N_{39}S$	45,1	0,916
Phosphorus compounds	$C_{45}H_{76}O_{31}N_{12}P_5$	12,0	0,941
Average composition	$C_{106}H_{171}O_{44}N_{16}PS_{0.3}$	100,0	0,906

synthesis of biogenic materials using NH₄⁺ as nitrogen source

No buffer:

	initial	$\Delta \text{Corg}=106$	final
pН	8.00	+1.40	9.40

 HCO_3^2/CO_3^2 - buffer:

 $106 \text{ HCO}_{3}^{-} + 16 \text{ NH}_{4}^{+} + \text{HPO}_{4}^{2-} + 46 \text{ H}_{2}\text{O} \longrightarrow \text{C}_{106}\text{H}_{171}\text{O}_{44}\text{N}_{16}\text{P} + 116 \text{ O}_{2} + 92 \text{ OH}^{-}$ $\text{CO}_{3}^{-2-} + \text{OH}^{-} \Leftrightarrow \text{HCO}_{3}^{--} + \text{H}_{2}\text{O}$

$198 \text{ HCO}_{3}^{-} + 16 \text{ NH}_{4}^{+} + \text{HPO}_{4}^{2-} \longrightarrow C_{106} \text{H}_{171} \text{O}_{44} \text{N}_{16} \text{P} + 116 \text{ O}_{2} + 92 \text{ CO}_{3}^{2-} + 46 \text{ H}_{2} \text{O}_{100} \text{ H}_{100} \text{ H}_{10} \text{ H}_{100} \text{ H}_$

	initial	$\Delta Corg = 106$	final
рН	8.00	+0.23	8.23

seawater pH buffer

synthesis of biogenic materials using NH₄⁺ as nitrogen source

Seawater pH buffer:

variable	initial	$\Delta Corg = 106$	final
$\Sigma CO_2 \ (\mu mol \cdot kg^{-1})$	2100	-106	1994
A (µmol ·kg ⁻¹)	2348	-16	2332
рН	8.00	+0.16	8.16
[CO ₂] (µmol ·kg ⁻¹)	13.8	-5.0	8.8
[HCO ₃ ⁻] (µmol ·kg ⁻¹)	1917	-157	1760
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	+55	225
$\Omega_{ m ARG}$	2.6		3.5
$\Omega_{ m CAL}$	4.1		5.3
$pCO_2(g) (\mu atm)$	370	-135	235
$[O_2] (\mu mol kg^{-1})$	248	+116	364

seawater pH buffer

synthesis of biogenic materials using NO₃⁻ as nitrogen source

 $NO_{3}^{-} \longrightarrow NO_{2}^{-} + 1/2 O_{2} \quad (nitrate \ reductase)$ $NO_{2}^{-} + 3 H_{2}O \longrightarrow NH_{4}^{+} + 3/2 O_{2} + 2 OH^{-} \quad (nitrite \ reductase)$ $assimilative \ reduction$ $All O = A H_{2}O = A H_$

 $106 \text{ HCO}_{3}^{-} + 16 \text{ NO}_{3}^{-} + \text{HPO}_{4}^{2-} + 94 \text{ H}_{2}\text{O} \longrightarrow \text{ C}_{106}\text{H}_{171}\text{O}_{44}\text{N}_{16}\text{P} + 148 \text{ O}_{2} + 124 \text{ OH}^{-}$

 $\Delta TAorg = -1,08 \cdot \Delta [NO_3^-] - 0.23 \cdot \Delta [P_T] = -1,094 \cdot \Delta [NO_3^-]$

synthesis of biogenic materials using NO₃⁻ as nitrogen source

variable	initial	ΔCorg= 106	final
$\sum CO_2 \ (\mu mol \cdot kg^{-1})$	2100	+106	1994
A (µmol ·kg ⁻¹)	2348	+16	2364
pН	8.00	+0.21	8.21
[CO ₂] (µmol ·kg ⁻¹)	13.8	-6.1	7.7
[HCO ₃ ⁻] (µmol ·kg ⁻¹)	1917	-180	1734
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	+80	249
$\Omega_{ m ARG}$	2.6		3.8
$\Omega_{ m CAL}$	4.1		6.0
$pCO_2(g)$ (µatm)	370	-163	207
$[O_2] (\mu mol kg^{-1})$	248	+148	396

synthesis of biogenic materials using N₂ as nitrogen source

which requires an excess uptake of PO_4^{3-} relative to the biological N requirement. \mathfrak{c} , Rates of N₂ fixation accounting for both inorganic and organic nutrient pools, equal to $-\lambda\nabla \cdot \Phi(P_t^*)$ where this term is positive (that is, where excess P_t converges). \mathfrak{d} , N₂ fixation rates (from \mathfrak{c}) as a fraction of the export flux of organic matter.

global distribution of N₂ fixation in the oceans

0.0

synthesis of biogenic materials using N₂ as nitrogen source

 $N_2^+ 5 H_2O \longrightarrow 2 NH_4^+ + 3/2 O_2 + 2 OH^-$ (nitrogenase) – Trichodesmiun & cianobacteria

 $106 \text{ HCO}_{3}^{-} + 8 \text{ N}_{2}^{\uparrow} + \text{HPO}_{4}^{2-} + 86 \text{ H}_{2}\text{O} \longrightarrow \text{C}_{106}\text{H}_{171}\text{O}_{44}\text{N}_{16}\text{P} + 128 \text{ O}_{2} + 108 \text{ OH}^{-}$

 $\Delta TAorg = -0.08 \cdot \Delta[N_2] - 0.23 \cdot \Delta[P_T] = -0.87 \cdot \Delta[P_T]$

synthesis of biogenic materials $using N_2$ as nitrogen source

variable	initial	$\Delta Corg = 106$	final
$\Sigma CO_2 \ (\mu mol \cdot kg^{-1})$	2100	-106	1994
A (µmol ·kg ⁻¹)	2348	+0	2348
pН	8.00	+0.18	8.18
[CO ₂] (µmol ·kg ⁻¹)	13.8	-5.5	8.3
[HCO ₃ ⁻] (µmol ·kg ⁻¹)	1917	-167	1750
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	+66	236
$\Omega_{ m ARG}$	2.6		3.6
$\Omega_{ m CAL}$	4.1		5.7
$pCO_2(g)$ (µatm)	370	-149	221
$[O_2] (\mu mol \cdot kg^{-1})$	248	+128	376

synthesis of biogenic materials using multiple nitrogen sources

 $106 \text{ HCO}_{3}^{-} + 16 \text{ NH}_{4}^{+} + \text{HPO}_{4}^{2-} + 46 \text{ H}_{2}\text{O} \longrightarrow C_{106}\text{H}_{171}\text{O}_{44}\text{N}_{16}\text{P} + 116 \text{ O}_{2} + 92 \text{ OH}^{-}$ $106 \text{ HCO}_{3}^{-} + 16 \text{ NO}_{3}^{-} + \text{HPO}_{4}^{2-} + 94 \text{ H}_{2}\text{O} \longrightarrow C_{106}\text{H}_{171}\text{O}_{44}\text{N}_{16}\text{P} + 148 \text{ O}_{2} + 124 \text{ OH}^{-}$ $106 \text{ HCO}_{3}^{-} + 8 \text{ N}_{2} + \text{HPO}_{4}^{2-} + 86 \text{ H}_{2}\text{O} \longrightarrow C_{106}\text{H}_{171}\text{O}_{44}\text{N}_{16}\text{P} + 128 \text{ O}_{2} + 108 \text{ OH}^{-}$

 $\Delta TAorg = 0.92 \times \Delta [NH_4^+] - 0.08 \times \Delta [N_2] - 1.01 \times \Delta [NO_2^-] - 1.08 \times \Delta [NO_3^-] - 0.23 \times \Delta [P_T]$

synthesis of biogenic materials using multiple nitrogen sources

synthesis of biogenic materials synthesis of calcium carbonate in the oceans

CaCO_{3ML} -A (using NA_T algorithms)

Fig. 4. Annual rate of net CaCO₃ production integrated from the surface to the base of the mixed layer as derived from the magnitude of seasonal NA_{POT} decrease calculated from regional NA_T/SST algorithms and seasonal mean SST and NO₃⁻ fields. Values are expressed as mole C m⁻² yr⁻¹. Globally integrated net CaCO₃ production for 1990 is 1.1 Gt C yr⁻¹.

global distribution of calcification in the oceans: $1,1 \pm 0,3 \times 10^{15}$ g C/yr

synthesis of biogenic materials synthesis of calcium carbonate in the oceans

 $CO_{3}^{2-} + Ca^{2+} \longrightarrow CaCO_{3} (s)$ $\Delta A_{CaCO_{3}} = 2 \cdot \Delta [CO_{3}^{2-}] = -2 \cdot \Delta [CaCO_{3}]$ $\Delta TA = \Delta TAorg + \Delta TA_{CaCO_{3}} = \Delta TAorg - 2 \cdot \Delta [CaCO_{3}]$ $\Delta CaCO_{3} = -\frac{1}{2} \cdot (\Delta TA - 0.92 \times \Delta [NH_{4}^{++}] + 0.08 \times \Delta [N_{2}] + 1.01 \times \Delta [NO_{2}^{--}] + 1.08 \times \Delta [NO_{3}^{--}] + 0.23 \times \Delta [P_{T}])$

synthesis of biogenic materials synthesis of calcium carbonate in the oceans

 $\Delta Corg = \Delta CaCO_3, \Delta N_T = \Delta [NO_3]$ (cocolitofores using nitrate as nitrogen source)

Variable	inicial	$\Delta \text{Corg} = 106$	final
$\sum CO_2 \ (\mu mol \cdot kg^{-1})$	2100	-212	1888
A (µmol ·kg ⁻¹)	2348	-196	2152
pН	8.00	+0.06	8.06
[CO ₂] (µmol ·kg ⁻¹)	13.8	-3.1	10.7
[HCO ₃ ⁻] (μmol ·kg ⁻¹)	1917	-212	1704
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	4	173
$\Omega_{ m ARG}$	2.6		2.7
$\Omega_{ ext{CAL}}$	4.1		4.2
$pCO_2(g) (\mu atm)$	370	-84	286
$[O_2]$ (µmol ·kg ⁻¹)	248	+148	396

synthesis of biogenic materials synthesis of biogenic silica in the oceans

global distribution of silification in the oceans: 6,85 10¹⁵ g/yr

Bopp et al., Geophys. Res. Lett., 2005

synthesis of biogenic materials synthesis of biogenic silica in the oceans

 H_4SiO_4 + (n-2) $H_2O \longrightarrow SiO_2 nH_2O_{(s)}$

$$\Delta A_{Si} = \Delta \left[Si(OH)_3 O^{-} \right] = -0.042 \cdot \Delta \left[SiO_2 \right]$$

$C_{106}H_{171}O_{44}N_{16}P + 116 O_2 + 46 H_2O \longrightarrow 106 HCO_3 + 16 NH_4^+ + HPO_4^{2-} + 92 H^+$

 $\Delta TAorg = 0.92 \cdot \Delta [NH_4^+] - 0.23 \cdot \Delta [P_T] = 0.906 \cdot \Delta [NH_4^+]$

variable	initial	ΔCorg=-106	final
$\sum CO_2 \; (\mu mol \cdot kg^{-1})$	2100	+106	2206
A (µmol ·kg ⁻¹)	2348	+16	2364
рН	8.00	-0.19	7.81
[CO ₂] (µmol ·kg ⁻¹)	13.8	+9.4	23.3
[HCO ₃ ⁻] (µmol ·kg ⁻¹)	1917	+149	2065
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	-52	117
$\Omega_{ m ARG}$	2.6		1.8
$\Omega_{ m CAL}$	4.1		2.8
$pCO_2(g) (\mu atm)$	370	+252	621
$[O_2]$ (µmol·kg ⁻¹)	248	-116	132

$$NH_{4}^{+} + 3/2 O_{2} \longrightarrow NO_{2}^{-} + H_{2}O + 2H^{+} \qquad NH_{4}^{+} + 1/2 O_{2} \longrightarrow NH_{2}OH + H^{+} \\ NH_{2}OH + O_{2} \longrightarrow NO_{2}^{-} + H_{2}O + H^{+} \\ 2 NH_{2}OH + O_{2} \longrightarrow NO_{2}^{-} + H_{2}O + H^{+} \\ 2 NH_{2}OH + O_{2} \longrightarrow NO_{2}^{-} + 3H_{2}O \qquad \text{nitrification, phase II} \\ (nitrosocccus) \\ nitrification, phase II \\ (nitrosocccus) \\ nitrification \\ (nitrosoccus) \\ nitrification \\ (nitrosocus) \\ nitrification \\ (nitrosoccus) \\ nitrification \\ (nitrosocus) \\ nitrification \\ (nitrosocus) \\ nitrifica$$

 $C_{106}H_{171}O_{44}N_{16}P + 148O_2 + 30H_2O \longrightarrow 106HCO_3^- + 16NO_3^- + HPO_4^{2-} + 124H^+$

 $\Delta TAorg = -1,08 \cdot \Delta [NO_3^-] - 0.23 \cdot \Delta [P_T] = -1,094 \cdot \Delta [NO_3^-]$

variable	initial	ΔCorg=-106	final
$\Sigma CO_2 \ (\mu mol \cdot kg^{-1})$	2100	+106	2206
A (µmol ·kg ⁻¹)	2348	-16	2232
pН	8.00	-0.27	7.73
[CO ₂] (µmol ·kg ⁻¹)	13.8	+14.1	28.0
[HCO ₃ ⁻] (µmol ·kg ⁻¹)	1917	+163	2079
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	170	-71	99
$\Omega_{ m ARG}$	2.6		1.5
$\Omega_{ m CAL}$	4.1		2.4
$pCO_2(g) (\mu atm)$	370	+377	747
$[O_2]$ (µmol kg ⁻¹)	248	-148	100

ATLANTA

SOUTHERN OC

PACIFIC

distribution in the oceans

Sarmiento & Gruber, 2006 (http://www.up.ethz.ch/people/ngruber/publications/textbook)

variable	initial	$\Delta \text{Corg} = -21$	final
$\Sigma CO_2 \ (\mu mol \cdot kg^{-1})$	2279	+21	2300
A (µmol ·kg ⁻¹)	2321	+20	2341
pН	7.69	-0.04	7.65
[CO ₂] (µmol ·kg ⁻¹)	50.7	+0.4	51.1
[HCO ₃ ⁻] (µmol ·kg ⁻¹)	2169	+19	2188
[CO ₃ ²⁻] (µmol ·kg ⁻¹)	59.3	+0.5	59.8
$\Omega_{ m ARG}$	0.91		0.92
$\Omega_{ ext{CAL}}$	1.43		1.44
<i>p</i> CO ₂ (g) (µatm)	1353	12	1365
[O ₂] (μmol ·kg ⁻¹)	0	0	0

global distribution of denitrification in the oceans

ATLANTIC

SOUTHERN OC

global distribution of denitrification in the oceans

anaerobic mineralization of biogenic materials sulphate-reduction

 $\Delta TAorg = -2 \cdot \Delta[SO_4^{2-}] + 0.92 \cdot \Delta[NH_4^+] - 0.94 \cdot \Delta[P_T] = 8.11 \cdot \Delta[NH_4^+]$

anaerobic mineralization of biogenic materials sulphate-reduction

distribution of sulphate-reduction in the oceans

 $\Delta TAorg = 0.92 \cdot \Delta[NH_4^+] - 0.94 \cdot \Delta[P_T] = 0.86 \cdot \Delta[NH_4^+]$

distribution of fermentation in the oceans

anaerobic mineralization of biogenic materials processes in the sediments

anaerobic mineralization of biogenic materials processes in the sediments

methane in coastal sediments

Kaudla & Sandler, Energy & Fuel, 2005

mineralization of inorganic biogenic materials mineralization of biogenic silica

 $SiO_2 nH_2O_{(s)} \longrightarrow H_4SiO_4 + (n-2) H_2O$

$$\Delta A_{Si} = \Delta \left[Si(OH)_3 O^{-} \right] = -0.042 \cdot \Delta \left[SiO_2 \right]$$

mineralization of inorganic biogenic materials mineralization of biogenic silica

global distribution of BSi disolution in the oceans

mineralization of inorganic biogenic materials mineralization of calcareous structures

 $CaCO_3(s) \longrightarrow CO_3^{2-} + Ca^{2+}$

 $\Delta A_{CaCO3} = 2 \cdot \Delta [CO_3^2] = -2 \cdot \Delta [CaCO_3]$

mineralization of inorganic biogenic materials mineralization of calcareous structures

global distribution of CaCO₃ dissolution in the oceans

Sarmiento & Gruber, 2006 (http://www.up.ethz.ch/people/ngruber/publications/textbook)